Assessing the MODIS Crop Detection Algorithm for Soybean Crop Area Mapping and Expansion in the Mato Grosso State, Brazil
نویسندگان
چکیده
Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R (2) = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state.
منابع مشابه
Soybean Crop Area Estimation and Mapping in Mato Grosso State, Brazil
Evaluation of the MODIS Crop Detection Algorithm (MCDA) procedure for estimating historical planted soybean crop areas was done on fields in Mato Grosso State, Brazil. MCDA is based on temporal profiles of EVI (Enhanced Vegetation Index) derived from satellite data of the MODIS (Moderate Resolution Imaging Spectroradiometer) imager, and was previously developed for soybean area estimation in Ri...
متن کاملMapping Fractional Cropland Distribution in Mato Grosso, Brazil Using Time Series MODIS Enhanced Vegetation Index and Landsat Thematic Mapper Data
Mapping cropland distribution over large areas has attracted great attention in recent years, however, traditional pixel-based classification approaches produce high uncertainty in cropland area statistics. This study proposes a new approach to map fractional cropland distribution in Mato Grosso, Brazil using time series MODIS enhanced vegetation index (EVI) and Landsat Thematic Mapper (TM) dat...
متن کاملWavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil
Since 2000, the southwestern Brazilian Amazon has undergone a rapid transformation from natural vegetation and pastures to row-crop agricultural with the potential to affect regional biogeochemistry. The goals of this research are to assess wavelet algorithms applied to MODIS time series to determine expansion of row-crops and intensification of the number of crops grown. MODIS provides data fr...
متن کاملChronopharmacological effects of growth hormone on the executive function and oxidative stress response in rats
Objective(s): to investigate the chronopharmacological effects of growth hormone on executive function and the oxidative stress response in rats. Materials and Methods: Fifty male Wistar rats (36-40 weeks old) had ad libitum access to water and food and were separated into four groups: diurnal control, nocturnal control, diurnal GH-treated, and nocturnal GH-treated animals. Levels of Cu, Zn sup...
متن کاملSoy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil
Previous research has established the usefulness of remotely sensed vegetation index (VI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to characterize the spatial dynamics of agriculture in the state of Mato Grosso (MT), Brazil. With these data it has become possible to track MT agriculture, which accounts for ~85% of Brazilian Amazon soy production, across periods of sev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014